
10.2 Properties of PDF and CDF for Continuous Ran-
dom Variables

10.18. pX(x) = P [X = x] = P [x ≤ X ≤ x] =
∫ x
x fX(t)dt = 0.

Again, it makes no sense to speak of the probability that X will
take on a pre-specified value. This probability is always zero.

10.19. P [X = a] = P [X = b] = 0. Hence,

P [a < X < b] = P [a ≤ X < b] = P [a < X ≤ b] = P [a ≤ X ≤ b]

• The corresponding integrals over an interval are not affected
by whether or not the endpoints are included or excluded. 41

10.20. The pdf fX is determined only almost everywhere42. Given
a pdf f for a continuous random variable X, if we construct a
function g by changing the function f at a countable number of
points43, then g can also serve as a pdf for X.

This is because fX is defined via its integration property. Chang-
ing the value of a function at a few points does not change its area
under the curve (from a to b)

10.21. The cdf of any kind of random variable X is defined as

FX(x) = P [X ≤ x] .

Note that even though there are more than one valid pdfs for any
given random variable, the cdf is unique. There is only one cdf for
each random variable.

41This implies that, when we work with continuous random variables, it is usually not
necessary to be precise about specifying whether or not a range of numbers includes the
endpoints. This is quite different from the situation we encounter with discrete random
variables where it is critical to carefully examine the type of inequality.

42Lebesgue-a.e, to be exact
43More specifically, if g = f Lebesgue-a.e., then g is also a pdf for X.
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(a) pdf, cdf, and probability calculation for continuous RV 

 

(b) Finding Probabilities from CDF 

 

𝑃 𝑎 𝑋 𝑏 𝐹 𝑥 ≡ 𝑃 𝑋 𝑥
𝐹 𝑏 𝐹 𝑎

“     ”

𝑓 𝑥

Definition: 𝐹 𝑥 𝑃 𝑋 𝑥
For any RV,

 𝑃 𝑎 𝑋 𝑏 𝐹 𝑏 𝐹 𝑎

 𝑃 𝑋 𝑏 𝐹 𝑏
𝑃 𝑋 𝑏 𝐹 𝑏

 𝑃 𝑋 𝑎 1 𝐹 𝑎
𝑃 𝑋 𝑎 1 𝐹 𝑎

 𝑃 𝑎 𝑋 𝑏 𝐹 𝑏 𝐹 𝑎
𝑃 𝑎 𝑋 𝑏 𝐹 𝑏 𝐹 𝑎
𝑃 𝑎 𝑋 𝑏 𝐹 𝑏 𝐹 𝑎
𝑃 𝑎 𝑋 𝑏 𝐹 𝑏 𝐹 𝑎

 𝑃 𝑋 𝑎 0 𝑃 𝑋 𝑎 𝐹 𝑎 𝐹 𝑎
(amount of jump in the CDF @ 𝑎)

 𝑃 𝑋 𝑏 𝐹 𝑏
𝑃 𝑋 𝑏 𝐹 𝑏 𝑃 𝑋 𝑏

 𝑃 𝑋 𝑎 1 𝐹 𝑎
𝑃 𝑋 𝑎 1 𝐹 𝑎 𝑃 𝑋 𝑎

For continuous RV,

Figure 29: Summary of properties involving CDF
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10.22. Unlike the cdf of a discrete random variable, the cdf of a
continuous random variable has no jump and is continuous every-
where.

10.23. For continuous random variable, given the pdf fX(x), we
can find the cdf of X by

FX(x) = P [X ≤ x] =

∫ x

−∞
fX(t)dt.

Example 10.24. For the random variable generated by the rand

command in MATLAB or the rand() command in Excel,

1

1

1

1

1

1

10.25. Given the cdf FX(x) of a continuous random variable, we
can find the pdf fX(x) by

Step 1 If FX is differentiable at x, we set

d

dx
FX(x) = fX(x).

Step 2 From 10.20, at countably many points, we can set the values
of fX to be any value. We use this to deal with the boundary
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point(s) including the point(s) where FX is not differentiable.
Usually, the values are selected to give simple expression. (In
many cases, they are simply set to 0.)

Example 10.26. Suppose that the lifetime X of a device has the
cdf

FX (x) =


0, x < 0,
1
4x

2, 0 ≤ x ≤ 2,
1, x > 2.

Because Fx(x) is defined piecewise and the expression defining
each piece is “nice”, we can find the derivative for each piece and
get

fX (x) =


0, x < 0,
x
2 , 0 < x < 2,
0, x > 2.

This leaves two points44 to be considered: x = 0 and x = 2.
However, they are only two points and therefore, from 10.20, the
values of the pdf can be any real numbers. Here, we set the values
to be 0 at both points:

fX (x) =

{
1
2x, 0 < x < 2,
0, otherwise.

10.27. In many situations when you are asked to find the pdf
from a description of a random variable, it may be easier to find
cdf first and then differentiate it to get pdf.

Exercise 10.28. A point is “picked at random” in the inside of a
circular disk with radius r. Let the random variable X denote the
distance from the center of the disk to this point. Find fX(x).

44At each of these boundary points, the expressions on both of its sides are different and
hence, to really find its derivative, we need to consider whether the derivative from the left
exists and is the same as the derivative from the right. At x = 0, turn out that the slope on
both sides is 0. So the derivative exists. However, at x = 2, FX has no derivative: the slope
is 1 from the left but 0 from the right.
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10.29. fX is nonnegative and
∫∞
−∞ fX(x)dx = 1.

Example 10.30. Random variable X has pdf

fX(x) =

{
ce−2x, x > 0
0, otherwise

Find the constant c and sketch the pdf.

Example 10.31. The pdf of a random variable X is shown in
Figure 30. What should be the value of h?

1

5

Figure 30: Triangular pdf for Example
10.31.

Definition 10.32. A continuous random variable is called expo-
nential if its pdf is given by

fX (x) =

{
λe−λx, x > 0,
0, x ≤ 0

for some λ > 0

Example 10.33. In Example 10.30, X is an exponential random
variable with λ = 2.

Theorem 10.34. Any nonnegative45 function that integrates to
one is a probability density function (pdf) of some random
variable [9, p.139].

45or nonnegative a.e.
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10.3 Expectation and Variance

10.35. Expectation : Suppose X is a continuous random variable
with probability density function fX(x).

EX =

∫ ∞
−∞

xfX(x)dx (23)

E [g(X)] =

∫ ∞
−∞

g(x)fX(x)dx (24)

In particular,

E
[
X2
]

=

∫ ∞
−∞

x2fX(x)dx

VarX =

∫ ∞
−∞

(x− EX)2fX(x)dx = E
[
X2
]
− (EX)2.

Example 10.36. For the random variable generated by the rand

command in MATLAB or the rand() command in Excel,

Example 10.37. For the exponential random variable introduced
in Definition 10.32,
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10.38. If we compare other characteristics of discrete and continu-
ous random variables, we find that with discrete random variables,
many facts are expressed as sums. With continuous random vari-
ables, the corresponding facts are expressed as integrals.

10.39. All of the properties for the expectation and variance of
discrete random variables also work for continuous random vari-
ables as well:

(a) Intuition/interpretation of the expected value: As n → ∞,
the average of n independent samples of X will approach EX.
This observation is known as the “Law of Large Numbers”.

(b) For c ∈ R, E [c] = c

(c) For constants a, b, we have E [aX + b] = aEX + b.

(d) E [
∑n

i=1 cigi(X] =
∑n

i=1 ciE [gi(X)].

(e) VarX = E
[
X2
]
− (EX)2

(f) VarX ≥ 0.

(g) VarX ≤ E
[
X2
]
.

(h) Var[aX + b] = a2 VarX.

(i) σaX+b = |a|σX .

10.40. Chebyshev’s Inequality :

P [|X − EX| ≥ α] ≤ σ2
X

α2

or equivalently

P [|X − EX| ≥ nσX ] ≤ 1

n2

• This inequality use variance to bound the “tail probability”
of a random variable.

• Useful only when α > σX
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Example 10.41. A circuit is designed to handle a current of 20
mA plus or minus a deviation of less than 5 mA. If the applied
current has mean 20 mA and variance 4 (mA)2, use the Cheby-
shev inequality to bound the probability that the applied current
violates the design parameters.

Let X denote the applied current. Then X is within the design
parameters if and only if |X − 20| < 5. To bound the probability
that this does not happen, write

P [|X − 20| ≥ 5] ≤ VarX

52
=

4

25
= 0.16.

Hence, the probability of violating the design parameters is at most
16%.

10.42. Interesting applications of expectation:

(a) fX (x) = E [δ (X − x)]

(b) P [X ∈ B] = E [1B(X)]

Example 10.43. Consider two distributions for a random variable
X. In part (a), which corresponds to the second column in the
table below, X is a discrete random variable with its pmf specified
in the first row. In part (b), which corresponds to the third column,
X is a continuous random variable with its pdf specified in the first
row.
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Distribution pX (x) =

{
cx2, x ∈ {1, 2} ,
0, otherwise.

fX (x) =

{
cx2, x ∈ (1, 2) ,
0, otherwise.

(i) Find c

(ii)
Find EX

(iii)
Find E

[
X2
]

(iv)
Find VarX

(v)
Find σX
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